Organische Synthesen mit Übergangsmetall-Komplexen, 52¹⁾

N-Vinylaminocarben- und N-(2-Propenyl)aminocarben-Komplexe durch Addition von Keteniminen an Carben-Eisenkomplexe

Rudolf Aumann**, Beate Trentmann*, Mechtild Dartmann^b und Bernt Krets^b

Organisch-Chemisches Institut der Universität Münster^a, Orléans-Ring 23, W-4400 Münster

Anorganisch-Chemisches Institut der Universität Münster^b, Corrensstraße 36, W-4400 Münster

Eingegangen am 29. Januar 1991

Key Words: Aminocarbene complexes of iron / N-Vinylaminocarbene complexes / π-Allyl,σ-complexes of iron / N-(2-Propenyl)aminocarbene complexes / Methylenation of ketene imines by carbene complexes

Organic Syntheses with Transition Metal Complexes, 52^{1} . – N-Vinylaminocarbene and N-(2-Propenyl)aminocarbene Complexes by Addition of Ketene Imines to Carbene Iron Complexes

Ketene imines R(Me)C = C = NPh(2, R = Me, Et, i-Pr) form 1:1 adducts with the carbene iron complex $(CO)_4Fe = C(OEt)Ph(1)$. The initial step of the reaction involves an attack of the *nitro*gen atom of 2 at the carbene carbon atom of 1 and a subsequent rearrangement to give N-vinylaminocarbene complexes (E/Z)-4. In a parallel process with different regiochemistry the central carbon of the CCN unit is attached to the carbene carbon to yield π -allyl, σ -complexes (E/Z)-3. Alkylation of 3a with [Et₃O]BF₄ leads to the formation of a cationic N-(2-propenyl)aminocarbene complex 6a. Protonation of 4 with trifluoroacetic acid results in a ring contraction to give the four-membered metallacycles 7. X-ray data are reported for prototypes (Z)-4c and 6a.

Übergangsmetall-Carbenkomplexe $L_n M = C(OEt)Ph$ (A) [$L_n M = Cr(CO)_5$, Fe(CO)₄] sind leicht zugänglich und vielfältig modifizierbar. Sie werden in letzter Zeit zunehmend als Synthese-Bausteine eingesetzt. Vor allem sind Reaktionen von A mit Alkinen², Alkenen^{2,3} und Iminen⁴ untersucht worden. Reaktionen von A mit Allenen hingegen haben derzeit noch explorativen Charakter. Es zeichnen sich aber bereits einige Grundmuster ab, die in Schema 1 zusammengefaßt sind. Man erhält – abhängig vom Metallrest – Tri(methylen)methan-Komplexe [Reaktionsweg a)]^{5a-c)}, Metathese-Produkte [Reaktionsweg b)]^{5c)}, Cyclopropanierungs-Produkte [Reaktionsweg c)]⁶⁰ und Homologisierungs-Produkte [Reaktionsweg d)]⁵⁾.

Die Untersuchungen an Allenen wurden auf N-Heteroallene ausgedehnt. Schema 2 gibt einige grundsätzliche Überlegungen hierzu wieder. Demnach kommen als potentielle Reaktionsprodukte aus A und Keteniminen Imino-di(methylen)methan-Komplexe [Reaktionsweg a)], Metathese-

Schema 2. Einige grundsätzliche Überlegungen zur Übertragung von C₁-Bausteinen aus Übergangsmetall-Carbenkomplexen auf Ketenimine

Chem. Ber. 124 (1991) 1795-1803 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/0808-1795 \$ 3.50+.25/0

Produkte [Reaktionsweg b)], Cyclopropanierungs-Produkte [Reaktionsweg c)] sowie Additions/Umlagerungsprodukte [Reaktionsweg d)] u. a. in Betracht.

Im Gegensatz zu Oxo-di(methylen)methan-Komplexen⁷ sind Imino-di(methylen)methan-Komplexe [vgl. Schema 2, Reaktionsweg a)] bisher nicht bekannt. An Wolfram wurden Metathesen unter Bildung von Isocyanid-Komplexen beobachtet^{4d)}. Andererseits gibt es zahlreiche Beispiele für einen nucleophilen Angriff des Stickstoff-Atoms von C = N-Bindungen an das Carbenkohlenstoff-Atom von A unter Bildung von β -Lactamen^{4a)}, Aminocarben-Komplexen^{4b)}, (Alkylidenamino)carben-Komplexen^{4c)}, Ylid-Komplexen^{4d)} und Vinyliden-Komplexen als Metathese-Produkten^{4e)}.

π -Allyl, σ -Komplexe 3 und N-Vinylaminocarben-Komplexe 4 aus Carbenkomplex 1 und Keteniminen 2

Bei der Umsetzung des Carben-Eisenkomplexes 1 mit N-Phenylketeniminen 2 in Ether bei 50 °C bilden sich in glatter Reaktion 1:1-Addukte. Es entstehen nebeneinander zwei Typen von Verbindungen, nämlich (farblose) π -Allyl- σ -Komplexe (E/Z)-3 und (rote) N-Vinylaminocarben-Komplexe (E/Z)-4. Ausbeuten und Produktverteilung sind aus Tab. 1 ersichtlich.

(E/Z)-**3**

Aus der Konnektivität des Ligandengerüsts von 3 und 4 folgern wir, daß der Carbenrest von 1 sowohl auf das Stickstoff- als auch auf das mittlere Kohlenstoff-Atom der CCN-Einheit von 2 übertragen wird. Dies geschieht offensichtlich in Konkurrenzreaktionen, vergleichbar mit den in Schema 2 unter a) und d) vorgeschlagenen Umwandlungen. Anders als die Methylenierung von Allenen mit A = 1, bei der fast ausschließlich Tri(methylen)methan-Komplexe entstehen⁵ [Schema 1, a)], liefert die Methylenierung von Keteniminen

Tab. 1. Einfluß des Raumbedarfs von R auf die Produktverteilung und die Isomerenzusammensetzung von π -Allyl- σ -Komplexen (E/Z)-3 und N-Vinylaminocarben-Komplexen (E/Z)-4 bei der Addition von Keteniminen 2 an 1

	R	3:4	(E/Z)-3 ^{a)}	(E/Z)-4 ^{a)}	[3+4] (%) ^{b)}
a: b: c:	Me Et iPr	1:1.9 1:1.4 1:1.0	5:8 10:17		73 77 86

^{a)} Ermittelt durch Integration von ¹H-NMR-Signalen in Gemischspektren; Strukturzuordnung anhand von NOE-Experimenten und unter Bezug auf Kristallstruktur-Analysen (s. u.) von (Z)-4c und 6a. Letztere dient als Bezugspunkt für die Konfigurationszuordnung am Kohlenstoff = C(OEt)Ph. – ^{b)} Gesamtausbeuten in % bezogen auf jeweils rein isolierte Verbindungen.

mit 1 keine Imino-di(methylen)methan-Komplexe 5, sondern π -Allyl, σ -Komplexe 3. Diese weisen zwar gleiche C,N-Verknüpfungsmuster wie 5 auf, konnten aber bisher weder durch Thermolyse noch durch Photolyse in 5 umgewandelt werden. Im Gegensatz zur Homologisierung von Allenen [Schema 1, d)]⁵⁰, die nur als Nebenreaktion geringer Bedeutung in Erscheinung tritt, wird bei Keteniminen 2 die Übertragung von Carbenliganden aus 1 auf das *terminale* Heteroatom deutlich begünstigt. Wahrscheinlich entstehen Ylid-artige Primäraddukte^{4e} [Schema 2, d)], die sich spontan in *N*-Vinylaminocarben-Komplexe 4 umwandeln (s. u.).

$$\begin{array}{c|c} Ph & Ph \\ Me & Ph \\ Me & Ph \\ R^{p} & N - Ph \\ (CO)_{3}Fe & O \\ (E/Z) - 3 \\ \end{array}$$

Es bestehen formale Ähnlichkeiten zwischen den Reaktionen von 1 mit Allenen bzw. mit Keteniminen. Die Polarisierung des Substrats durch das Stickstoff-Atom bewirkt jedoch ein charakteristisch verschiedenes "Einrasten" von Zwischenstufen im Zuge mehrstufiger Reaktionssequenzen. Da 1 mit der C=N-Bindung⁴⁾ von 2 rascher als mit der C=C-Bindung reagiert, treten an dem von uns untersuchten System die Unterschiede besonders deutlich hervor.

Überlegungen zum Reaktionsablauf

Die stereoisomeren π -Allyl, σ -Komplexe 3 sowie die stereoisomeren *N*-Vinylaminocarben-Komplexe 4 sind unter den genannten Reaktionsbedingungen konfigurationsstabil. Auch lassen sich 3 und 4 nicht wechselseitig ineinander umlagern. Wir gehen daher davon aus, daß die Verbindungen kinetisch kontrolliert über die Vorstufen **B** und **C** entstehen. **B** und **C** wiederum könnten aus zwitterionischen Primäraddukten hervorgegangen sein. Die Additionsrichtung wird sowohl von der Polarisierung der Fe=C-Bindung als auch von sterischen Faktoren bestimmt.

Mit zunehmendem Raumbedarf von R wird das Produktverhältnis 3/4 deutlich zu Gunsten von 3 verschoben

(Tab. 1). Anders als bei der Bildung von Tri(methylen)methan-Komplexen^{5c)} aus 1 und Allenen (Schema 1), werden aus 1 und Keteniminen 2 nur die Isomeren (E/Z)-3, nicht jeodch (E/Z)-3' erhalten.

Zum Reaktionsablauf stellen wir uns vor, daß durch Ringaufweitung der exo-Methylen-aza-metallacyclobutane **B** und **C** unter Insertion von Kohlenmonoxid zunächst exo-Methylen-aza-metallacyclopentanone **D** bzw. **E** entstehen. Die Regiochemie (vgl. Tab. 1) wird auf der Stufe der Vierringe festgelegt. Von **D** gelangt man durch σ/π -Umlagerung unter Komplexierung der exo-Methylengruppe zu 3. Im Prinzip bestehen hierfür zwei Möglichkeiten unter Bildung unterschiedlicher Stereoisomere 3 bzw. 3'. Tatsächlich werden jedoch nur erstere erhalten. Als Selektionsfaktor kommt die Wechselwirkung zwischen dem Sauerstoff-Atom und dem koordinativ ungesättigten Metallzentrum von **D** (in Schema 3 durch * gekennzeichnet) in Betracht.

Die Umwandlung von E in *N*-Vinylaminocarben-Komplexe (E/Z)-4 erfordert die Wanderung einer OEt-Gruppe (vom ursprünglichen Carbenkohlenstoffatom) zur μ -CO-Einheit. Nach Rotation um die =C-N-Einfachbindung kann die Koordination der *exo*-C=C-Bindung zu 4 eintreten.

Alkoxy(amino)carben-Komplex 6a durch Alkylierung von 3a

Die Strukturen der Komplexe 3 konnten anhand ihrer spektroskopischen Daten zunächst nicht eindeutig zugeordnet werden. Da die Verbindungen als Öle anfallen, die beim Abkühlen glasartig erstarren, war eine Kristallstruktur-Analyse nicht möglich. Zur Gewinnung kristalliner Produkte wurden die Komplexe daher derivatisiert.

Chem. Ber. 124 (1991) 1795-1803

Es gelang, durch Alkylierung der Acyl-gruppe $Fe-CO-R^{8}$ von **3a** mit [Et₃O]BF₄ einen gut kristallisierenden kationischen Alkoxy(amino)carben-Komplex **6a** herzustellen und von diesem eine Kristallstruktur-Analyse anzufertigen. **6a** diente dann als Bezugssubstanz; anhand ihrer spektroskopischen Daten konnten auch die Strukturen von **3a**-c eindeutig zugeordnet werden.

1-Aza-3-ferracyclobutene 7 durch Protonierung von 4

Im Zusammenhang mit der (elektrophilen) Alkylierung von 3 (s. o.) wurde die Protonierung von 4 studiert, um die strukturelle Verwandtschaft von 3 und 4 zu verdeutlichen. Die *N*-Vinylaminocarben-Komplexe 4 weisen als charakteristische Strukturelemente $4\frac{1}{2}$ -Ringe auf. Eine Protonierung der Esterfunktion von 4 ergäbe einen *N*-(2-Propenyl)aminocarben-Komplex F, der Ähnlichkeit mit dem Alkylierungsprodukt 6 von 3 aufweist. Andererseits sollte eine Protonierung der elektronenreichen C = C-Bindung von 4 unter Ringverengung zu einem Vierring 7 bzw. einem $3\frac{1}{2}$ -Ring G führen.

4a ($R = CH_3$) bildet mit Trifluoressigsäure ein gelbes 1:1-Addukt. Im ¹H-NMR-Spektrum dieser Verbindung sind die Signale der Methylgruppen in Dubletts aufgespalten (${}^{3}J =$ 6.6 Hz). Somit ist das Proton am terminalen Kohlenstoffatom der C = C - N-Einheit addiert worden. Da man aus (E/Z)-4b ein Diastereomerengemisch erhält, in dem das ursprüngliche Isomerenverhältnis unverändert vorliegt, wird das stereogene Zentrum von 4b bei der Protonierung offensichtlich nicht verändert. Die Fe(CO)3-Gruppe zeigt drei scharfe ¹³C-NMR-Signale (7a: bei $\delta = 208.03, 201.41,$ 201.07). Das ¹³C-NMR-Signal bei $\delta = 241$ weist auf eine $Fe = C(NR_2)$ -Gruppe hin. Somit könnte dem Produkt eine 1-Aza-3-ferracyclobuten-Struktur 7 (mit einer Fe-O- $CO-CF_3$ -Gruppe) oder eine salzartige Struktur G (mit einer π -Iminium-Gruppe) zugeordnet werden. Letztere wäre isoelektronisch mit kristallographisch gut charakterisierten η^3 -Vinylcarben-Eisenkomplexen⁹).

Für 7 (und gegen G) spricht die Lage des ¹³C-NMR-Signals von $C(CO_2Et)$ bei $\delta = 67.13$. In einer (komplexierten) Iminium-Einheit G sollte dieses Signal zu wesentlich tieferem Feld verschoben sein^{4e)}. Die v(C=O)-Bande bei 1699 cm⁻¹ wäre mit einer Fe $-O-CO-CF_3$ -Einheit vereinbar; ein salzartiges Carboxylat wie G ließe eine längerwellige Verschiebung (nach 1550-1610 cm⁻¹) erwarten. Für unseren Strukturvorschlag 7 spricht ferner, daß die Verbindung hydrolysebeständig ist und sich chromatographieren läßt.

Kristallstruktur von (Z)-4c

Die Strukturen von 4a-c konnten anhand spektroskopischer Daten nicht eindeutig ermittelt werden. Die Zuordnung gelang erst nach dem Vorliegen der Kristallstruktur-Analyse von 4c (Abb. 1). Diese ergab als charakteristisches Strukturelement eine Fe=C-NR-C=C-Einheit. Die trigonal-bypyramidale Geometrie am Eisen ist verzerrt. Carben- und Alkenligand von (Z)-4c sind *cis*-ständig, mit einem Winkel C(4)-C(5)-Fe(1)-C(6) von 111.3° zwischen M=C- und C=C-Bindung. Der Metallacyclus aus Fe(1), C(5), N(1) und C(6) ist fast planar bzw. leicht gewellt. Der Interplanarwinkel Fe(1)-C(5)-N(1)-C(6) beträgt nur 5.3°.

Ein 4¹/₂-Ring-Chelatkomplex dieses Typs war unseres Wissens bisher nicht bekannt; wohl aber entsprechende Carben/Alken-Chelatkomplexe von Wolfram mit 5¹/₂- und 6¹/₂-Ringen¹⁰). Erstere zeigen wie 4c orthogonal angeordnete M = C- und C = C-Bindungen, letztere hingegen treten in zwei verschiedenen Modifikationen mit orthogonalen bzw. parallelen M = C- und C = C-Einheiten auf.

Abb. 1. Molekülstruktur von (Z)-4c im Kristall

Die C=C-Einheit von 4c ist unsymmetrisch koordiniert [Fe(1)-C(5): 2.054 Å, Fe(1)-C(4): 2.160]¹¹⁾ und C(4)-C(5) mit 1.437 Å deutlich aufgeweitet. Sie ist nur geringfügig kürzer als im Ethylenkomplex (C₅Me₅)Ta(CHCMe₃)(η^2 -CH₂CH₂)(PMe₃) mit 1.48 Å, dem eine Metallacyclopropan-Struktur zugeordnet wird¹². Die Fe(1)-C(6)- (1.96 Å) und

Tab. 2. Ausgewählte Bindungsabstände [Å] und -winkel [°] von (Z)-4c

			_	_			_	_				_				_				_								
Fe(1)		C(:	1)		1	1.7	6	2 (8))			C ((1)		_	Fe	e (1)	-	с	(2)		1	.06	. 5	i (3)
Fe(1)	-	C(2	2)		1	1.7	8	1(8)			C((1)		-	Fe	e (1)	-	С	(3)			93	.8	(3	()
Fe(1)	-	C(3	3)		1	1.8	:19	€ (E	I)			C	(1)		-	Fe	э (1)	-	С	(4)		1	.06	.1	Ì3	ú.
Fe(1)	-	C(4	4)		2	2.1	.60	D (7	j)			ci	(1)		-	Fe	e Ò	1)	-	с	is	í.		1	39	. 2	(3	ń.
Fe(1)	-	C	5)		2	2.0)54	4 (6	5)			C	[1]		-	Fe	в(ı)	-	С	16	j.			94	. 8	13	ń.
Fe(1)	-	cie	5)		1	9	3	5 (6	5)			C	(2)		-	Fe	в (ıś	-	C	ìз	ś			90	. 2	i i 3	ń
N(1)	-	C	5)		1	4	6	4 i E	ń			C	2)		-	Fe	ΞÌ	1)	-	C	(4	ś		1	47	. 3	13	í.
N(1)	-	CÌC	5)		1	1.3	0) i	ú.			ci	(2)		_	Fe	эì	1í	-	c	(5	ś		1	09	. 0	i i a	ń.
N(1)	-	cù	15))	1	1.4	5	ΒÌΕ	ń.			ci	21	,	_	Fe	вí	ъ	-	Ċ	16	ś			89	. 8	13	5
0(4)	-	cia	22)		1	. 4	4	4 (8	ú.			ci	3)		_	Fe	= (īí	-	č	4	ś			90	. 8	(3	5
0(4)	-	cia	21)		1	. 3	52	2 Ì S	ú			ci	3)		_	Fe	ì	īí	-	č	(5	ś		1	05	. 5	13	5
0(5)	-	cia	21)		1	. 2	0	7 (9	ú.			ci	3)		-	Fe	e (īí	-	č	16	ś		1	71	. 1	(3	ń
C(4)	-	cÌ	5) [′]		1	. 4	31	7 is	ń			C	4)		_	Fe	e (1)	-	č	(5	í			39		113	6
C(5)	-	cia	21))	1	. 4	7	(\mathbf{i})	'			ci	4)		-	Fe	a (īí	-	č	6	ś			84	. 3	113	5
C(6)	-	cis	∍)໌		1	. 4	6	1 (9)			ci	้รา		-	Fe	ì	īí	-	č	ìē	í			66	. 1	13	1
		•	'				-	•	'				- /					-,		-	• -	`				-		
Fe(1)	-	C(4	1)	-	c	(5)		6	6.	1	(4)	F	e (11		-	C	(6)		-	N	(1))	10	00	. 1	(4)
Fe(1)	-	cia	ŧŚ.	-	ci	7)		10	8.	3	17	í	F	eí	1		_	C	6)		-	C	6	5	13	35	7	151
Fe(1)	-	cia	i)	-	ci	8)		12	3.	2	í B	í	N	'n	ĩ		-	c	6)		-	c	(9)	5	12	24	2	(5)
C(5)	-	CIA	ń	-	ci	71		11	ο.	ō	í.	ś	c	ìs	5		-	N	11		-	ci	6		10	13	4	5
C(5)	-	CIA	ú	-	ci	้ลา		12	6.	ã	ì	ś	č	15	5		-	N	ĩí		-	č	(1)	51	12	4	0	5
citi	-	cia	ń	-	č	้ลา		ĩĩ	4 (i'	1	<i>,</i>	č	6	5		-	N	ií		-	č	(1)	3	13	22	5	5
Fe(1)	-	cè	51	-	N	ĩí		8	9.`	ā	ίΔ.	۱.	č	ì				0	4		-	č	(2)	2	11	7	a	6
Fe(1)	_	cie	5í	-	ci	4		7	4	í	4	ś	õ	ìã	5		_	č	21	١.	_	ŏ	(5)	~ ′	13	22		ie'
Fe(1)	-	cie	5	-	ci	21	١	11	8.	5	4	ś	õ		5		-	č	21	1	-	č	(5)		10	29	0	6
N(1)	-	ci	5í	-	ci	41	· /	ii	4	0	(5	ί.	ŏ	15			_	č	21	Υ.	_	č	(5)		12	6	8	(7)
N(1)	-	CU	sí.	-	č	21	ì	ĩĩ	5.	7	65	ί.	ŏ	à	6		-	č	22		_	č	12	21	11	12	5	6
C(4)	-	cit	51	-	ci	21	1	12	8.	á	i n	ί.	0		· /					,			. 2.	,	11			91
/	-	-1-	- /				· /			-	<u>``</u>	/				_				_				_				_

die N(1)–C(6)-Bindung (1.309 Å) liegen in dem für Aminocarben-Eisenkomplexen üblichen Bereich¹³⁾.

Kristallstruktur von 6a

Die röntgenographische Untersuchung von 6a zeigt, daß ein Alkoxy(amino)carben/ π -Allyl-Chelatkomplex vorliegt (Abb. 2). Charakteristisch ist das Strukturelement [Fe=C-NR-C(=C)-C]^{\oplus} mit *cis*-ständigen Carben- und Allylliganden und ähnlichen geometrischen Verhältnisse wie bei (Z)-4c. Auffallend ist der (leicht gewellte) Metallacyclus aus Fe(1), C(5), N(1) und C(4) mit einem Interplanarwinkel Fe(1)-C(5)-N(1)-C(4) von -2.2° und C(4)-Fe(1)-C(5)-C(6) 112.3° [vgl. (Z)-4c 111.3°].

Der Fe(1) – C(4)-Abstand (1.953 Å) liegt im gleichen Bereich wie bei (Z)-4c (1.936 Å) bzw. dem Ethoxy(amino)-

Abb. 2. Molekülstruktur von 6a im Kristall

Tab. 3. Ausgewählte Bindungsabstände [Å] und -winkel [°] von 6a

C(14)	-	- N(1)		1.43	37(3)	Fe	(1)	-	C (6)		2.231	(3)
C(4)	-	- N(1)		1.3	14 (4)	Fe	1) a	-	c	7)		2.233	(3)
c(4)		- 0(5)		1.30	D4 (4)	Fe	i(1)	-	c	1)		1.832	(3)
c(5)		- N(1)		1.40	55(4)	Fe	a(1)	-	сi	2)		1.824	(3)
C(5)	-	- cìsi		1.43	20(3)	Fe	2(1)	-	сi	3)		1.811	(3)
C(5)	-	- c(7)		1.4	27 (3)	Fe	2(1)	-	ci	4)		1.953	(3)
C(7)	-	- c(8)		1.49	91(4)	Fe	2(1)	-	ci	5)		2.050	(3)
C(7)	-	- 0(4)		1.39	94 (3)		• •						
c(1)	_	Fe(1)	_	C(5)	110.5(1	۱	C(4	۱.	-	0(5)	_	C(24)	119.9(2)
c(z)	-	Fe(1)	-	C(5)	127.5(1	í –	NII	ś	_	C(4)	-	0(5)	118.1(2)
c(3)	-	Fe(1)	-	C(5)	123.2(1	í.	Fe(í)	-	c(4)	-	N(1)	101.2(2)
C(4)		Fe(1)	-	C(5)	65.2(1	j –	Fe (ıj	-	C(4)	-	0(5)	140.7(2)
C(1)	-	Fe(1)	-	C(6)	93.0(1	j –	Fe (1)	-	C(5)	-	N(1)	91.8(2)
C(2)	-	Fe(1)	-	C(6)	95.0(1)	Fe (1)	-	C(5)	-	C(6)	77.7(1)
C(3)	-	Fe(1)	-	C(6)	161.2(1)	Fe(1)	-	C(5)	-	C(7)	77.6(1)
C(4)	-	Fe(1)	-	C(6)	83.7(1)	Fe (1)	-	C(6)	-	C(21)	113.4(1)
C(5)	-	Fe(1)	-	C(6)	38.4(1)	Fe(1)	-	C(6)	-	C(5)	63.9(1)
C(1)	-	Fe(1)	-	C(7)	92.1(1)	Fe(1)	-	C(6)	-	C(20)	117.0(2)
C(2)	-	Fe(1)	-	C(7)	164.9(1)	Fe(1)	-	C(7)	-	0(4)	109.4(2)
C(3)	-	Fe(1)	-	C(7)	91.8(1)	Fe(1)	-	C(7)	-	C(5)	63.7(1)
C(4)	-	Fe(1)	-	C(7)	84.1(1)	Fe(1)	-	C(7)	-	C(8)	117.7(2)
C(5)	-	Fe(1)	-	C(7)	38.6(1)	C(6)	-	C(5)	-	C(7)	127.9(2)
C(6)	-	Fe(1)	-	C(7)	69.9(1)	C(6)	-	C(5)	-	N(1)	114.3(2)
C(1)	-	Fe(1)	-	C(2)	89.2(1)	C(7)	-	C(5)	-	N(1)	111.7(2)
C(1)	-	Fe(1)	-	C(3)	91.8(1)	C(5)	-	C(6)	-	C(20)	119.8(2)
C(2)	-	Fe(1)	-	C(3)	103.2(1)	C(5)	-	C(6)	-	C(21)	124.2(2)
C(1)	-	Fe(1)	-	C(4)	175.6(1	2	C(2	0)	-	C(6)	-	C(21)	110.3(2)
C(2)	-	re(1)	-	C(4)	94.0(1	2	C (5	?	-	C(7)	-	C(8)	124.4(2)
C(3)	-	Fe(1)	-	C(4)	90.5(1	2	C (5	,	-	C(7)	-	0(4)	116.7(2)
C(4)	-	N(1)	-	C(5)	101.7(2	2	C(8)	-	C(7)	-	0(4)	113.9(2)
C(4)	-	N(1)	-	C(14)	134.1(3	2							
C(5)	-	N(1)	-	C(14)	123.9(2	2							
C(7)	-	0(4)	-	C(22)	114.5(2)							

carben-Komplex {[η^2 -CH₂=CH-C(piperidyl)-NMe C-(OEt)]Fe(CO)₃}BF₄ (1.94 Å)¹⁴. Die Abstände C(4)-N(1) und C(4)-O(5) sind verkürzt (1.314 bzw. 1.304 Å) wie bei (Z)-4c (1.309 Å) und dem Alkoxycarben-Eisenkomplex [CH(CO₂Me)=C(CO₂Me)-C(OMe)]Fe(CO)₃ (1.295 Å)¹⁵. Die Kohlenstoff-Atome des Allylsystems sind nahezu gleich weit voneinander entfernt [C(5)-C(6): 1.420, C(5)-C(7): 1.427 Å], das mittlere Kohlenstoff-Atom befindet sich etwas näher am Eisen als die beiden äußeren [Fe(1)-C(5): 2.050, Fe(1)-C(6): 2.231 und Fe(1)-C(7): 2.233 Å].

Komplexe vom Typ 3, 4 und 6 waren bisher nicht bekannt. Zwar wurden sie als Zwischenstufen postuliert, jedoch weder isoliert noch charakterisiert. Die Verbindungen sind als Synthese-Bausteine von Interesse, da sie sich leicht in vier-, fünf- und sechsgliedrige N-Heterocyclen umwandeln lassen.

Diese Arbeit wurde von der Stiftung Volkswagenwerk unterstützt. B. T. dankt dem Fonds der Chemischen Industrie für ein Doktoranden-Stipendium.

Experimenteller Teil

Umsetzung und Aufarbeitung unter Inertgas. – Alle Lösungsmittel waren trocken und frisch destilliert. – ¹H- und ¹³C-NMR: Bruker WM 300 (Zuordnung durch DR-Experimente bzw. Breitband-, DEPT- und "Gated-decoupling"-Messungen). – IR: Digilab FTS 45. – MS: Finnigan MAT 312. – Elementaranalysen: Perkin-Elmer 240 Elemental Analyser. – Säulenchromatographie: Merck-Kieselgel 100; Dünnschichtchromatographie: Merck DC-Alu-folien Kieselgel 60 F 254. – Petroletherfraktion: 40–60°C. R_{Γ} Werte beziehen sich auf DC-Tests.

Tricarbonyl {[[1,2- η -1-(ethoxycarbonyl)-2-methyl-1-propenyl]phenylamino]phenylcarben}eisen(0) (**4a**) und Tricarbonyl{(1,3,3 α ,4)- η -3-[(Z)- α -ethoxybenzyliden]-4-methyl-1-oxo-2-aza-1,4-pentandiyl}eisen(0) (**3a**): In einem luftdicht verschraubbaren 5-ml-Glasgefäß werden 302 mg (1.00 mmol) **1** in 4 ml trockenem Ether mit 150 mg (1.04 mmol) N-(2-Methyl-1-propenyliden)anilin (2a) 1.5 h auf 50°C erwärmt. Laut DC-Test ist 1 ($R_f = 0.6$ in Petrolether/Ether 10:1) fast vollständig verbraucht. Die zunächst dunkelbraune Lösung ist jetzt dunkelrot. Man dampft ein (20°C/15 Torr) und chromatographiert an Kieselgel (Säule 30 × 3 cm). Petrolether/Ether (10:1) liefert eine dunkelrote Fraktion ($R_f = 0.2$ in Petrolether/Ether 10:1) mit 211 mg (0.47 mmol) 4a. Aus Petrolether/Ether bei -20°C erhält man dunkelrote, quaderförmige Kristalle, Schmp. 105°C. Petrolether/Ether (1:1) ergibt anschließend eine farblose Fraktion ($R_f = 0.15$ in Petrolether/Ether 10:1) mit 115 mg (0.26 mmol7 3a, farbloses Öl.

4a: ¹H-NMR (C₆D₆/CS₂ 1:1): $\delta = 7.18 - 6.94$ und 6.74 (8:2, je m, 2 C₆H₅), 3.92 (2H, m, diastereotope OCH₂), 2.25 und 1.98 [je 3H, je s, =C(CH₃)₂], 0.88 (3H, t, ³J = 7.1 Hz, CH₃, OEt). - ¹³C-NMR (C₆D₆/CS₂ 1:1): $\delta = 253.99$ (Fe=C), 213.64 [Fe(CO)₃], 169.66 (CO₂Et), 142.39 (C-1, NC₆H₅), 139.11 (C-1, CC₆H₅); 131.30, 129.38, 128.71, 127.52, 126.79, 121.27 (1:2:2:1:2:2, C-2 bis C-6, NC₆H₅ und CC₆H₅), 91.11 (C-2), 69.48 (C-1), 60.04 (OCH₂), 29.62 und 28.58 [je CH₃, =C(CH₃)₂], 14.14 (CH₃, OEt). - IR (Hexan), cm⁻¹ (%): $\tilde{v} = 2031.0$ (100), 1975.1 (60), 1950.0 (70) [v(C = O)], 1710.0 (10) [v(C = O)]. - MS (70 eV): m/z (%), 447 (10) [M⁺], 419 (10) [M - CO], 391 (35) [M - 2 CO], 363 (35) [M - 3 CO], 336 (35) [363 - C₂H₃], 317 (35) [363 - HOC₂H₅], 291 (40) [363 - CO₂C₂H₄], 276 (35) [291 - CH₃], 234 (50), 181 (50) [HCPhNPh], 149 (50), 127 (50) [Mc₂CCCO₂Et], 109 (70), 95 (60), 83 (70), 77 (80), 56 (Fe).

 $C_{23}H_{21}FeNO_5$ (447.3) Ber. C 61.76 H 4.73 N 3.13 Gef. C 61.95 H 4.76 N 3.13

3a: ¹H-NMR (C₆D₆/CS₂ 1:1): $\delta = 7.61 - 7.42$ und 7.27 - 6.83 (3:7, je m, 2 C₆H₅), 3.32 und 2.97 (je 1 H, je dq, ²J = -8.8 Hz, ³J = 7.0, OCH₂), 2.01 und 0.98 [je 3 H, je s, =C(CH₃)₂], 1.69 (3 H, t, ³J = 7.0 Hz, CH₃, OEt). - ¹³C-NMR (C₆D₆/CS₂ 1:1): $\delta =$ 209.61, 208.76, 204.67 [Fe(CO)₃], 177.44 (C-1), 141.14 (C-1, NC₆H₃), 136.94 (C - OEt), 135.35 (C-1, CC₆H₃), 129.34 (C-2 und C-6, NC₆H₃), 114.61 (C-3 und C-5, NC₆H₃); 133.97, 130.64, 129.26, 128.79, 127.43, 122.89 (1 : 1 : 1 : 1 : 1, C-2 bis C-6, CC₆H₅, und C-4, NC₆H₅), 93.70 (C-3), 91.89 (C-4), 67.49 (OCH₂), 28.48 und 25.48 [je CH₃, =C(CH₃)₂], 14.94 (CH₃, OEt). - IR (Film), cm⁻¹ (%): $\tilde{v} = 2058.0$ (90), 1992.5 (100) [$v(C \equiv O$], 1660.7 (40) [v(C = O]]. - MS (70 eV): *m/z* (%), 419 (20) [M⁺ - CO], 391 (15) [M - 2 CO], 363 (20) [M - 3 CO], 335 (50) [M - 4 CO], 307 (40) [M - Fe(CO)₃], 112 (40), 105 (80), 84 (70), 77 (80), 56 (100) [Fe].

 $\begin{array}{c} C_{23}H_{21}FeNO_5 \ (447.3) \\ Gef. \ C \ 61.76 \ H \ 4.73 \ N \ 3.13 \\ Gef. \ C \ 65.44 \ H \ 5.31 \ N \ 4.25 \end{array}$

 $Tricarbonyl \{ [[1, 2-\eta - (Z) - 1 - (ethoxycarbonyl) - 2 - methyl - 1 - bute - 2 - methyl - 2 - methyl - 2 - methyl - 1 - bute - 2 - methyl - 2 - methyl$ nyl]phenylamino]phenylcarben}eisen(0) [(Z)-4b], Tricarbonyl- $\{[1,2-\eta-(E)-1-(ethoxycarbonyl)-2-methyl-1-butenyl]phenylami$ no]phenylcarben }eisen(0) [(E)-4b], Tricarbonyl $\{(1,3,3\alpha,4)-\eta-(3Z)-\eta 3-[(Z)-\alpha-ethoxybenzyliden]-4-methyl-1-oxo-2-aza-1,4-hexandiyl]$ eisen(0) [(Z)-3b] und Tricarbonyl{ $(1,3,3\alpha,4)-\eta-(3E)-3-[(Z)-\alpha-eth$ oxybenzyliden]-4-methyl-1-oxo-2-aza-1,4-hexandiyl}eisen(0) [(E)-3b]: In einem luftdicht verschraubbaren 5-ml-Glasgefäß werden 302 mg (1.00 mmol) 1 in 4 ml trockenem Ether mit 160 mg (1.01 mmol) N-(2-Methyl-1-butenyliden)anilin (2b) 1.5 h auf 50°C erwärmt. Laut DC ist 1 ($R_f = 0.6$ in Petrolether/Ether 10:1) fast vollständig verbraucht. Die zunächst dunkelbraune Lösung hat sich dunkelrot gefärbt. Man dampft ein (20°C/15 Torr) und chromatographiert an Kieselgel (Säule 30×3 cm). Mit Petrolether/Ether (10:1) erhält man eine dunkelrote Fraktion ($R_{f} = 0.24$ in Petrolether/Ether 10:1) mit 196 mg (0.43 mmol) eines 5:3-Gemisches aus (Z) und (E)-4b. Umkristallisieren aus Petrolether/Ether (10:1) bei - 78°C

führt zu dunkelroten, nadelförmigen Kristallen, Schmp. 106°C. Die nächste Fraktion ($R_f = 0.18$ in Petrolether/Ether 10:1) ist hellrot und besteht aus 62 mg (0.14 mmol) eines 1:6-Gemisches aus **4b** und **3b**. Mit Petrolether/Ether (1:1) schließlich eluiert man 98 mg (0.21 mmol) eines 8:5-Gemisches ($R_f = 0.18$ in Petrolether/Ether 10:1) aus (Z)- und (E)-**3b**, das ohne vorherige Trennung spektroskopisch analysiert wurde.

(Z)-4b: ¹H-NMR (C₆D₆/CS₂1:1): $\delta = 7.28 - 7.12, 7.02 - 6.81$ und 6.81 - 6.73 (2:6:2, je m, 2 C₆H₅); 3.96 (2H, m, diastereotope OCH₂), 2.95 und 2.59 (je 1 H, dq, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 7.1$, 3-H), 1.97 (3 H, s, =C-CH₃), 1.27 (3H, t, ${}^{3}J = 7.1$ Hz, 4-H), 0.85 (3H, t, ${}^{3}J =$ 7.1 Hz, CH₃, OEt). - ¹³C-NMR (C₆D₆/CS₂ 1:1, Isomerengemisch (Z)-4b: (E)-4b = 5:3): δ = 254.12 bzw. 253.99 (Fe=C), 213.75 bzw. 213.44 [Fe(CO)₃], 169.63 bzw. 169.20 (CO₂Et), 142.46 bzw. 142.22 (C-1, NC₆H₅), 139.39 bzw. 139.16 (C-1, CC₆H₅); 131.26, 131.14, 129.38, 129.26, 128.73, 127.49, 127.33, 126.69, 126.46, 121.36, 121.13 $[1:1:2:2:4:1:1:2:2:2:2; 2:2; je 2 (C-2 bis -6, NC_6H_5 und$ CC₆H₅)], 99.50 bzw. 98.55 (C-2), 69.21 bzw. 69.05 (C-1), 60.04 bzw. 59.99 (OCH₂), 34.11 bzw. 33.90 (CH₂, C-3), 25.33 bzw. 24.86 (CH₃, $=C-CH_3$), 14.86 bzw. 14.83 (CH₃, C-4), 14.20 (CH₃, OEt). - IR [Hexan, Isomerengemisch (Z)-4b: (E)-4b = 5:3], cm⁻¹ (%): \tilde{v} = 2031.0 (100), 1975.1 (60), 1950.0 (70) $[v(C \equiv O)]$, 1708.9 (10) [v(C=O)]. - MS [70 eV, Isomerengemisch (Z)-4b:(E)-4b = 5:3]: m/z (%), 461 (10) [M⁺], 433 (20) [M - CO], 405 (20) [M - 2 CO], $377 (20) [M - 3 CO], 349 (20) [377 - C_2H_4], 332 (20) [377 - C_2H_4]$ OC_2H_5], 305 (30) [377 - $CO_2C_2H_4$], 237 (40), 180 (40) [PhCNPh], 95 (40), 77 (70), 56 (100) [Fe].

(E)-4b: ¹H-NMR (C₆D₆/CS₂, 1:1): $\delta = 7.28 - 7.12$, 7.02-6.81 und 6.81-6.73 (2:6:2, je m, 2 C₆H₅), 3.98-3.87 (2H, m, diastereotope OCH₂), 2.31 (3H, s, =C-CH₃), 2.18 (2H, m, diastereotope 3-H₂), 1.08 (3H, t, ³J = 7.1 Hz, 4-H), 0.86 (3H, t, ³J = 7.1 Hz, CH₃, OEt). - ¹³C-NMR, IR und MS siehe (Z)-4b.

 $C_{24}H_{23}NFeO_5$ (461.3) Ber. C 62.49 H 5.03 N 3.04 Gef. C 62.48 H 5.16 N 2.98 [Isomerengemisch (Z)-4b:(E)-4b = 5:3]

(Z)-3b: ¹H-NMR (C₆D₆/CS₂ 1:1): $\delta = 7.57, 7.47, 7.28 - 7.01$ und 6.95-6.82 (2:1:6:1; "d", "d", m, m; 2 C₆H₅), 3.33 und 2.99 (je 1 H, dq, ${}^{2}J = -9.2$ Hz, ${}^{3}J = 7.0$, OCH₂), 2.00 (3 H, s, EtC-CH₃), 1.22 und 0.89 (je 1 H, dq, ${}^{2}J = -14.1$ Hz, ${}^{3}J = 7.0$, 5-H), 0.79 (3 H, t, ${}^{3}J = 7.0$ Hz, 6-H), 0.70 (3 H, t, ${}^{3}J = CH_{3}$, OEt). $- {}^{13}C$ -NMR (C₆D₆/ CS_2 1:1): $\delta = 209.58, 208.82, 204.87$ [Fe(CO)₃], 177.47 (C-1), 141.15 (C-1, NC₆H₅), 137.31 (C-OEt), 135.28 (C-1, CC₆H₅), 129.37 (C-3 und -5, NC₆H₅), 114.54 (C-2 und -6, NC₆H₅); 134.06, 129.74, 129.11, 128.80, 127.66, 122.92 (1:1:1:1:1:1, C-2 bis -6, CC₆H₅, und C-4, NC₆H₅), 99.62 (C-4), 93.50 (C-3), 67.34 (OCH₂), 33.67 (CH₂, C-5), 14.96 (CH₃, C-6), 14.84 (CH₃, OEt). - IR [Film, Isomerengemisch $(Z)-3b:(E)-3b = 8:5], cm^{-1}$ (%): $\tilde{v} = 2056.1$ (90), 1992.5 (100) $[v(C \equiv O)]$, 1662.6 (50) [v(C = O)]. – MS [70 eV, Isomerengemisch (Z)-3b:(E)-3b = 8:5]: m/z (%), 433 (10) [M⁺ - CO], 405 (10) [M - 2 CO], 377 (19) [M - 3 CO], 349 (20) [M - 4 CO], 321 (20) [349 - C₂H₄], 308 (20), 264 (20), 158 (80) [C₂H₅CH₂CCNPh], 105 (90), 77 (70), 57 (80) [Fe].

(E)-3b: ¹H-NMR (C₆D₆/CS₂ 1:1): δ = 7.61, 7.54, 7.28 – 7.01 und 6.95 – 6.82 (2:1:6:1; ,,d", ,,d", m, m; 2 C₆H₅), 3.34 und 2.96 (je 1 H, dq, ²J = -9.2 Hz, ³J = 7.0, OCH₂), 2.68 und 2.37 (je 1 H, dq, ²J = -14.0 Hz, ³J = 7.4, 5-H), 0.97 (3 H, s, EtC – CH₃), 0.97 (3 H, t, ³J = 7.4 Hz, 6-H), 0.65 (3 H, t, ³J = 7.0 Hz, CH₃, OEt). – ¹³C-NMR (C₆D₆/CS₂ 1:1): δ = 209.72, 208.92, 204.77 [Fe(CO)₃], 178.11 (C-1), 141.44 (C-1, NC₆H₅), 136.86 (C – OEt), 135.12 (C-1, CC₆H₅), 129.37 (C-3 und -5, NC₆H₅), 114.81 (C-2 und -6, NC₆H₃); 134.06, 130.67, 129.11, 128.77, 127.46, 122.80 (1:1:1:1:1:1, C-2 bis -6, CC₆H₅, und C-4, NC₆H₅), 98.03 (C-4), 93.55, (C-3), 67.07 (OCH₂), 32.75 (CH₂, C-5), 14.96 (CH₃, C-6), 14.89 (CH₃, OEt). – IR und MS siehe (Z)-3b.

 $C_{24}H_{23}FeNO_5$ (361.3) Ber. C 62.49 H 5.03 N 3.04 Gef. C 66.86 H 6.25 N 3.81 [Isomerengemisch (Z)-3b:(E)-3b = 8:5]

 $Tricarbonyl \{ [[1,2-\eta-(2Z)-2,3-dimethyl-1-(ethoxycarbonyl)-1-bu$ tenvl]phenvlamino]phenvlcarbeneisen(0) [(Z)-4c], Tricarbonyl-{[[1,2-n-(2E)-2,3-dimethyl-1-(ethoxycarbonyl)-1-butenyl]phenylamino | phenvlcarben | eisen(0) [(E)-4c], Tricarbonyl $\{(1,3,3\alpha,4),\eta\}$ (3Z)-3-[(Z)- α -ethoxybenzyliden]-4,5-dimethyl-1-oxo-2-aza-1,4-hexandiyl eisen(0) [(Z)-3c] und Tricarbonyl $\{(1,3,3\alpha,4)-\eta-(3E)-3-[(Z)-3)-((Z)-3)-[(Z) \alpha$ -ethoxybenzyliden]-4,5-dimethyl-1-oxo-2-aza-1,4-hexandiyl eisen(0)[(E)-3c]: 302 mg (1.00 mmol) 1 in einem luftdicht verschraubbaren 5-ml-Glasgefäß werden in 4 ml trockenem Ether mit 175 mg (1.01 mmol) N-(2,3-Dimethyl-1-butenyliden)anilin (2c) 1.5 h auf 50°C erwärmt. Laut DC-Test ist 1 ($R_f = 0.6$ in Petrolether/Ether 10:1) fast vollständig verbraucht. Die zunächst dunkelbraune Lösung hat sich dunkelrot gefärbt. Man dampft ein (20°C/15 Torr) und chromatographiert an Kieselgel (Säule 30×3 cm). Petrolether/Ether (10:1) ergibt zunächst eine dunkelrote Fraktion ($R_f = 0.22$ in Petrolether/Ether 10:1) mit 205 mg (0.43 mmol) eines 6:5-Gemisches aus (Z)-4c und (E)-4c. Aus Petrolether/Ether bei -78 °C erhält man daraus dunkelrote Kristalle, Schmp. 79°C. Die folgende hellrote Fraktion ($R_f = 0.15$ in Petrolether/Ether 10:1) enthält 45 mg (0.09 mmol) eines 1:9-Gemisches aus 4c und 3c. Petrolether/Ether (1:1) liefert schließlich eine farblose Fraktion ($R_{\rm f} = 0.15$ in Petrolether/ Ether 10:1) mit 160 mg (0.34 mmol) eines 17:10-Gemisches aus (Z)-3c und (E)-3c, das als solches spektroskopisch analysiert wurde.

(Z)-4c: ¹H-NMR (C₆D₆/CS₂ 1:1): $\delta = 7.24 - 7.18$ und 7.08 - 6.75(2:8, je m, 2 C₆H₅), 4.07 (2H, m, diastereotope OCH₂), 3.55 (1H, ,,sept", ${}^{3}J = 6.9$ und 6.5 Hz, CHMe₂), 1.86 (3H, s, =C-CH₃), 1.31 und 1.26 [je 3H, je d, ${}^{3}J = 6.5$ und 6.9 Hz, CH(CH₃)₂], 0.89 (3H, t, ${}^{3}J = 7.1$ Hz, CH₃, OEt). - 13 C-NMR (C₆D₆/CS₂ 1:1): $\delta =$ 255.40 bzw. 254.00 (Fe=C), 213.78 [Fe(CO)₃], 169.53 bzw. 168.87 (CO2Et), 142.61 bzw. 142.30 (C-1, NC6H5), 140.68 bzw. 139.20 (C-1, CC₆H₅); 131.23, 130.93, 129.38, 129.03, 128.94, 128.71, 127.41, 127.02, 126.67, 125.86, 120.96 [2:1:2:1:1:2:2:1:2:2:2:2; je 2 (C-2 bis -6, NC₆H₅ und CC₆H₅)]; 105.33 (C-2), 69.52 (C-1), 59.99 (OCH₂), 36.54 bzw. 35.36 (CH,C-3), 24.33 bzw. 23.53 (CH₃, =CCH₃), 22.91 bzw. 22.72 und 19.17 bzw. 19.06 [je CH₃, CH(CH₃)₂], 14.18 (CH₃, OEt). - IR [Hexan, Isomerengemisch (Z)- $4c:(E)-4c = 6:5], cm^{-1}$ (%): $\tilde{v} = 2029.1$ (100), 1973.2 (60), 1950.0 (80) $[v(C \equiv O)]$, 1707.7 (10) [v(C = O)]. - MS [70 eV, Isomerengemisch (Z)-4c: (E)-4c = 6:5]: m/z (%), 475 (20) [M⁺], 447 (40) [M - CO], 419 (100) (M - 2 CO), 391 (40) [M - 3 CO], 363 $(50) [391 - C_2H_4], 345 (40) [391 - HOEt], 319 (50) [363 - CO_2],$ 276 (40), 237 (70) 196 (50), 180 (100) [PhCNPh], 160 (70), 95 (60), 77 (60), 71 (70), 56 (90) [Fe].

*Röntgenstrukturanalyse*¹⁶: C₂₅H₂₅FeNO₅, (**Z**)-4c, Molmasse 475.3 g · mol⁻¹, Raumgruppe P2₁/c, a = 11.401(6), b = 8.554(4), c = 24.256(9) Å, β = 90.26(4)°, V = 2365.6 Å³, Z = 4, ρ = 1.33 g/cm, Meßtemperatur 293 K, Meßmethode 2Θ/Θ-scan, Meßbereich $4-54^{\circ}/2Θ$, Meßgeschwindigkeit $4-29^{\circ}/min$ (intensitätsabhängig), gemessene Reflexe 5153, unabhängige Reflexe mit $I > 2.5\sigma(I)$ 2136, Strukturlösung durch Patterson-Synthese (SHELXTL-plus), Variable 284, R₁ 0.0667, R₂ 0.0551. Atomkoordinatcn siehe Tab. 4.

(E)-4c: ¹H-NMR (C_6D_6/CS_2 1:1): $\delta = 7.24-7.18$ und 7.08-6.75 (2:8, je m, 2 C_6H_5), 3.99 und 3.88 (je 1 H, dq, ²J = -10.8 Hz, ³J = 7.1, OCH₂), 2.22 (3H, s, =CCH₃), 2.14 (1 H, "sept", ³J = 6.7 Hz und 6.6, CHMe₂), 1.37 und 0.82 [je 3 H, je d, ³J = 6.7 und 6.6 Hz, CH(CH₃)₂], 1.00 (3H, t, ³J = 7.1 Hz, CH₃, OEt). - ¹³C-NMR (C_6D_6/CS_2 1:1): $\delta = 255.40$ bzw. 254.00 (Fe = C), 213.78 [Fe(CO)₃], 169.53 bzw. 168.87 (CO₂Et), 142.61 bzw. 142.30 (C-1, NC₆H₅), 140.68

Tab. 4. Koordinaten der Atome und äquivalente U-Werte von (Z)-4c

	x	У	z	^U eq
Fe(1)	0.27576(9)	0.06895(10)	0.10299(4)	0.0522(4)
N(1)	0.2913(4)	0.3171(6)	0.1586(2)	0.044(2)
0(1)	0.3291(6)	0.0767(6)	-0.0146(2)	0.104(3)
0(2)	0.4680(5)	-0.1090(6)	0.1536(3)	0.106(3)
0(3)	0.1399(6)	-0.2223(6)	0.0931(3)	0.124(3)
0(4)	0.2620(4)	0.1665(5)	0.2498(2)	0.063(2)
0(5)	0.0843(5)	0.0663(6)	0.2292(2)	0.085(2)
C(1)	0.3073(6)	0.0715(8)	0.0320(3)	0.065(3)
C(2)	0.3915(7)	-0.0371(8)	0.1353(3)	0.067(4)
C (3)	0.1887(7)	-0.1089(8)	0.0985(3)	0.074(4)
C(4)	0.1191(6)	0.2077(8)	0.1132(3)	0.065(3)
C (5)	0.1941(6)	0.2055(7)	0.1610(3)	0.047(3)
C(6)	0.3569(6)	0.2628(7)	0.1188(3)	0.042(3)
C(7)	0.005(2)	0.086(2)	0.1224(8)	0.081(6) ^a)
C(7Å)	0.001(2)	0.150(2)	0.1108(7)	0.059(5) ^a)
C(8)	0.092(2)	0.341(2)	0.0798(7)	0.059(5)a)
C(8A)	0.135(2)	0.367(2)	0.0714(8)	0.073(6) ^{a)}
C(9)	0.4586(6)	0.3449(8)	0.0961(3)	0.050(3)
C(10)	0.5531(7)	0.2610(9)	0.0768(3)	0.068(3)
C(11)	0.6477(8)	0.335(1)	0.0540(3)	0.086(4)
C(12)	0.6497(9)	0.493(1)	0.0478(4)	0.096(5)
C(13)	0.5553(9)	0.577(1)	0.0650(3)	0.083(4)
C(14)	0.4588(7)	0.5078(9)	0.0887(3)	0.065(3)
C(15)	0.3007(6)	0.4553(7)	0.1935(3)	0.045(3)
C(16)	0.2016(6)	0.5407(8)	0.2034(3)	0.066(3)
C(17)	0.2111(7)	0.6709(9)	0.2373(3)	0.084(4)
C(18)	0.3158(8)	0.7086(9)	0.2605(3)	0.080(4)
C(19)	0.4135(7)	0.6218(8)	0.2515(3)	0.065(3)
C(20)	0.4066(6)	0.4922(7)	0.2174(3)	0.051(3)
C(21)	0.1706(7)	0.1378(8)	0.2156(3)	0.054(3)
C(22)	0.2465(7)	0.1350(8)	0.3078(3)	0.076(4)
C(23)	0.170(2)	0.253(2)	0.3352(9)	0.098(7)a)
C(23A)	0.218(2)	0.281(2)	0.3389(7)	0.071(6)a)
C(24)	-0.015(1)	0.432(2)	0.0993(6)	0.093(5) ^{a)}
C(24A)	-0.038(1)	0.100(2)	0.0539(5)	0.083(5)a)
C(25)	0.070(1)	0.296(2)	0.0191(5)	0.089(5) ^a)
C(25A)	-0.082(1)	0.261(2)	0.1387(6)	0.081(5) ^a)

^{a)} Besetzungsfaktor: 0.5.

 $C_{25}H_{25}FeNO_5$ (475.3) Ber. C 63.17 H 5.30 N 2.95 Gef. C 63.18 H 5.38 N 2.97 [Isomerengemisch (Z)-4c: (E)-4c = 6:5]

(Z)-3c: ¹H-NMR (C₆D₆/CS₂ 1:1): δ = 7.56, 7.51, 7.34, 7.24-7.05 und 6.97 - 6.83 (2 : 1 : 1 : 5 : 1; "d", "d", "d", m, m, 2 C₆H₅); 3.34 und 2.97 (je 1 H, dq, ${}^{2}J = -8.8$ Hz, ${}^{3}J = 7.0$, OCH₂), 1.95 (3 H, s, C_{iPr} -CH₃), 0.96 – 0.85 [7 H, m, CH(CH₃)₂], 0.71 (3 H, t, ³J = 7.0 Hz, CH₃, OEt). - ¹³C-NMR (C₆D₆/CS₂ 1:1): $\delta = 209.77, 208.73, 205.59$ [Fe(CO)₃], 177.36 (C-1), 141.07 (C-1, NC₆H₅), 137.20 (C-OEt), 136.74 (C-1, CC₆H₅), 129.36 (C-3 und C-5, NC₆H₅), 114.44 (C-2 und C-6, NC₆H₅); 133.75, 130.74, 129.54, 128.88, 128.75, 122.91 (1:1: 1: 1: 1: 1, C-2 bis C-6, CC₆H₅, und C-4, NC₆H₅); 107.48 (C-4), 92.94 (C-3), 67.16 (OCH₂), 35.06 (CH, C-5), 24.46 und 22.63 [je CH₃, CH(CH₃)₂], 19.63 (CH₃, C_{(Pr}-CH₃), 14.97 (CH₃, OEt). - IR [Film, Isomerengemisch (Z)-3c:(E)-3c = 17:10], cm⁻¹ (%): $\tilde{v} = 2054.2$ (90), 1988.6 (100) $\lceil v(C \equiv O) \rceil$, 1664.2 (50) $\lceil v(C = O) \rceil$. - MS $\lceil 70 \text{ eV}$, Isomerengemisch (Z)-3c:(E)-3c = 17:10]: m/z (%), 447 (60) $[M^+ - CO]$, 419 (30) [M - 2 CO], 391 (70) [M - 3 CO], 363 (90) [M - 4 CO], 334 (50) [363 - C₂H₅], 318 (60), 292 (50), 278

Z)- (60), 236 (60), 180 (70) [PhCNPh], 172 (85) [Me₂CHCH₂CCNPh], 160 (79), 105 (80), 84 (90), 71 (70), 56 (100) [Fe].

 $C_{25}H_{25}FeNO_5$ (475.3) Ber. C 63.17 H 5.30 N 2.95 Gef. C 63.60 H 5.23 N 3.20 [Isomerengemisch (Z)-3c:(E)-3c = 17:10]

Tricarbonyl { $[(1,2,2\alpha)-\eta-(1-[(\mathbf{Z})-\alpha-ethoxybenzyliden]-2-methyl-$ 1,2-propandiyl)phenylamino [ethoxycarben]eisen-tetrafluoroborat (6a): In einem luftdicht verschraubbaren 5-ml-Glasgefäß werden 112 mg (0.25 mmol) 3a in 4 ml trockenem Dichlormethan mit 50 mg (0.26 mmol) Triethyloxonium-tetrafluoroborat versetzt. Nach 12 h bei 20°C ist laut IR-Spektrum 3a fast vollständig verbraucht. Man dampft ein (20°C/15 Torr), nimmt in wenig Dichlormethan auf und überschichtet mit Ether. Bei 20°C erhält man 115 mg (82%) hellgelbe, nadelförmige Kristalle von 6a, Schmp. 143 °C. – ¹H-NMR [D₆]Aceton): $\delta = 8.00$ und 7.87 (je 1 H, "d", 2,6-H, CC₆H₅), 7.93 (2H, "d", 2,6-H, NC₆H₅), 7.72-7.60, 7.56 und 7.48 (4:1:1; m, "t", "t"; 3- bis 5-H, C₆H₅), 4.81 (2H, q, ${}^{3}J = 7.1$ Hz, Fe=C-OCH₂), 3.83 und 3.38 (je 1 H, dq, ${}^{2}J = -9.7$ Hz, ${}^{3}J =$ 7.1, $C = C - OCH_2$), 2.32 und 1.52 [je 3H, je s, $= C(CH_3)_2$], 1.63 $(3H, t, {}^{3}J = 7.1 \text{ Hz}, \text{Fe}=C-\text{OCH}_{2}CH_{3}), 0.92 (3H, t, {}^{3}J = 7.1 \text{ Hz},$ $C = C - OCH_2CH_3$, - ¹³C-NMR (CDCl₃); $\delta = 241.64$ (Fe=C), 205.99, 204.66, 202.97 [Fe(CO)₃], 149.72 (C-1, NC₆H₅), 137.71 (C-1, CC₆H₅), 130.98 (C-OEt), 130.26 (C-3 und C-5, NC₆H₅), 118.42 (C-2 und C-6, NC₆H₅); 132.82, 131.55, 130.98, 129.25, 128.95, 128.25 $(1:1:1:1:1:1, C-2 bis C-6, CC_6H_5, und C-4, NC_6H_5)$, 99.70 (C-1), 87.45 (C-2), 75.30 (OCH₂, Fe=C-OEt), 68.15 (OCH₂, C = C - OEt), 28.57 und 25.51 [je CH_3 , = $C(CH_3)_2$], 14.94 und 14.45 (je CH₃, OEt). – IR (Film), cm⁻¹ (%): $\tilde{v} = 2085.0$ (80), 2023.3 (80) $[v(C \equiv O)]$, 1527.6 (70), 1055.1 (100). – MS (70 eV): m/z (%), 475 (5) $[M^+ - HBF_4]$, 448 (10) [476 - CO], 420 (20) [476 - 2 CO], 392 (20) [476 - 3 CO], 363 (20) [392 - Et], 319 (30), 307 (30) [363 - Fe], 292 (30), 262 (40) [319-COEt], 174 (40), 143 (50), 129 (40), 116 (59), 105 (100), 77 (90), 57 (90) [Fe].

 $\begin{array}{c} C_{25}H_{26}BF_4FeNO_5 \ (563.1) \\ \text{Ber. C } 53.32 \ H \ 4.65 \ N \ 2.49 \\ \text{Gef. C } 53.10 \ H \ 4.73 \ N \ 2.53 \end{array}$

*Röntgenstrukturanalyse*¹⁶: C₂₅H₂₆BF₄FeNO₅, **6a**, Molmasse 563.2 g · mol⁻¹, Raumgruppe PI, a = 9.753(7), b = 10.745(9), c = 13.742(9) Å, $\alpha = 73.38(6)$, $\beta = 70.26(5)$, $\gamma = 76.80(6)^{\circ}$, V = 1284.9 Å³, Z = 2, $\varrho = 1.46$ g/cm, Meßtemperatur 140 K, Meßmethode 2 Θ/Θ -scan, Meßbereich $4 - 54^{\circ}/2\Theta$, Mcßgeschwindigkeit $4 - 29^{\circ}$ /min (intensitätsabhängig), gemessene Reflexe 5647, unabhängige Reflexe 4751, Strukturlösung durch Patterson-Synthese (SHELXTL-plus), Variable 334, R_1 0.0416, R_2 0.0463. Atomkoordinaten siehe Tab. 5.

3,3,3-Tricarbonyl-4-isopropyl-1,2-diphenyl-3-(trifluoracetoxy)-1aza-3-ferra-2-cyclobuten-4-carbonsäure-ethylester (7a): Zu 224 mg (0.50 mmol) 4a in 4 ml trockenem Benzol gibt man in einem luftdicht verschraubbaren 5-ml-Glasgefäß 10 Tropfen Trifluoressigsäure. Nach 2 h bei 20°C ist 4a fast vollständig verbraucht. Die

Tab. 5. Koordinaten der Atome und äquivalente U-Werte von 6a

	×	<u> Ү</u>	2	^U eq
Fe(1)	0.20134(4)	0.16379(3)	0.20258(3)	0.0162(2)
C(1)	0.3683(3)	0.0815(2)	0.2404(2)	0.020(1)
C(2)	0.2869(3)	0.1227(2)	0.0733(2)	0.019(1)
C(3)	0.1040(3)	0.0265(2)	0.2811(2)	0.023(1)
C(4)	0.0233(3)	0.2624(2)	0.1671(2)	0.019(1)
C(5)	0.1406(3)	0.3472(2)	0.2341(2)	0.017(1)
C(6)	0.2743(3)	0.3608(2)	0.1507(2)	0.018(1)
C(7)	0.1196(3)	0.2636(2)	0.3378(2)	0.019(1)
C(8)	0.2175(3)	0.2447(2)	0.4056(2)	0.022(1)
C(9)	0.2433(3)	0.1213(3)	0.4/14(2)	0.026(1)
C(10)	0.3312(3)	0.1028(3)	0.53/1(2)	0.033(1)
C(11)	0.3905(3)	0.2068(3)	0.5392(2)	0.038(2)
C(12)	0.3593(3)	0.3308(3)	0.4783(2)	0.037(2)
C(13)	0.2/2/(3)	0.3502(3)	0.4113(2)	0.029(1)
C(14)	-0.1016(3)	0.483/(2)	0.20/3(2)	0.020(1)
C(15)	-0.2464(3)	0.4/5/(3)	0.2200(2)	0.020(1)
C(10)	-0.3504(3)	0.5005(3)	0.2201(2) 0.2247(2)	0.032(1)
C(18)	-0.1656(3)	0.7097(3)	0.2151(2)	0.036(2)
C(19)-	-0.0595(3)	0.5983(2)	0.2060(2)	0.028(1)
C(20)	0.2709(3)	0.4402(2)	0.0407(2)	0.027(1)
C(21)	0.4216(3)	0.3585(2)	0.1672(2)	0.024(1)
C(22).	-0.0980(3)	0.3185(3)	0.4741(2)	0.027(1)
c(23).	-0.2556(3)	0.2914(3)	0.5184(2)	0.036(2)
C(24)	-0.0593(3)	0.1364(2)	0.0839(2)	0.025(1)
C(25)	-0.2043(3)	0.0858(3)	0.1284(3)	0.035(2)
N(1)	0.0097(2)	0.3706(2)	0.1981(2)	0.0178(8)
0(1)	0.4702(2)	0.0252(2)	0.2630(2)	0.0282(9)
0(2)	0.3411(2)	0.0973(2)	-0.0064(1)	0.0308(9)
0(3)	0.0364(2)	-0.0541(2)	0.3335(2)	0.0356(10)
0(4) ·	-0.0240(2)	0.2409(2)	0.3950(1)	0.0230(7)
0(5) ·	-0.0757(2)	0.2519(2)	0.1266(1)	0.0252(7)
F(1) ·	-0.1615(2)	0.1617(2)	-0.1340(1)	0.0345(7)
F(2) ·	-0.3523(2)	0.1687(1)	-0.1966(1)	0.0345(7)
F(3) ·	-0.2492(2)	0.3519(2)	-0.2339(2)	0.049(1)
F(4) ·	-0.3863(2)	0.2738(2)	-0.0669(2)	0.054(1)
B(1) ·	-0.2871(4)	0.2380(3)	-0.1572(3)	0.027(2)

Lösung hat sich von dunkelrot nach hellgelb verfärbt. Man dampft ein (20°C/15 Torr) und chromatographiert an Kieselgel. Eluieren mit Petrolether/Ether (4:1) liefert eine gelbe Fraktion ($R_f = 0.2$ in Petrolether/Ether [10:1) von 230 mg (82%) 7a. Umkristallisieren aus Ether/Petrolether bei -78°C ergibt gelbe Kristalle, Schmp. 92°C. – ¹H-NMR (C₆D₆/CS₂ 1:1): δ = 7.57, 7.22–7.13, 6.91-6.80 (2:2:6; "s" breit, m, m; 2 C₆H₅); 4.17 und 4.01 (je 1 H, dq, ${}^{2}J = -10.8$ Hz, ${}^{3}J = 7.1$, OCH₂), 2.44 (1 H, sept, ${}^{3}J = 7.0$ und 6.7 Hz, CHMe₂), 1.34 und 0.59 [je 3 H, je d, ${}^{3}J = 7.0$ und 6.7 Hz, CH(CH₃)₂], 1.09 (3H, t, ${}^{3}J = 7.1$ Hz, CH₃, OEt). $-{}^{13}$ C-NMR $(CDCl_3): \delta = 241.05 (Fe = C), 208.03, 201.41, 201.07 [Fe(CO)_3];$ 176.09 (CO₂Et), 162.99 [q, ${}^{2}J_{CF} = 37$ Hz, $C = O(CF_{3})$], 142.58 (C-1, NC₆H₅), 138.35 (C-1, CC₆H₅); 131.09, 129.70, 129.31, 128.71, 127.38, 126.07 (1 : 1 : 2 : 2 : 2 : 2, C-2 bis C-6, NC_6H_5 und CC_6H_5); 115.28 (q, ${}^{1}J_{CF} = 290$ Hz, CF₃), 67.13 (C-4), 60.66 (OCH₂), 30.84 (CH, CHMe₂), 22.32 und 19.53 [je CH₃, CH(CH₃)₂], 14.25 (CH₃, OEt). - IR (Hexan), cm⁻¹ (%): $\tilde{v} = 2094.7$ (100), 2050.3 (70), 2011.8 (70) $[v(C \equiv O)]$, 1734.0 (20), 1699.3 (30) [v(C = O)]. - MS (70 eV): m/z (%), 477 (10) [M⁺ - 3 CO], 462 (20) [477 - CH₃], $294 (20) [462 - FeOCOCF_3], 267 (20), 248 (20), 169 (40), 149 (100),$ 97 (50) [COCF₃], 83 (50), 69 (70) [CF₃], 56 (70) [Fe].

 $\begin{array}{rl} C_{25}H_{22}F_{3}FeNO_{7} \ (561.3) & \mbox{Ber. C} 53.50 \ H \ 3.95 \ N \ 2.49 \\ & \mbox{Gef. C} 53.44 \ H \ 4.18 \ N \ 2.55 \end{array}$

3,3,3-Tricarbonyl-4-(1-methylpropyl)-1,2-diphenyl-3-(trifluoracetoxy)-1-aza-3-ferra-2-cyclobuten-4-carbonsäure-ethylester (7b und 7b'): In einem luftdicht verschraubbaren 5-ml-Glasgefäß werden 231 mg (0.50 mmol) eines 3:2-(Z/E)-Gemisches von 4b in 4 ml trockenem Benzol mit 10 Tropfen Trifluoressigsäure versetzt. Nach 2 h bei 20°C hat sich die Lösung von dunkelrot nach hellgelb verfärbt. Man dampft ein $(20 \,^{\circ}C/15 \,^{\circ}Torr)$ und chromatographiert an Kieselgel. Eluieren mit Petrolether/Ether (4:1) liefert eine gelbe Fraktion ($R_f = 0.2$ in Petrolether/Ether 10:1) von 230 mg (80%) eines 3:2-Diastereomerengemisches von 7b und 7b'. Umkristallisieren aus Ether/Petrolether bei $-78 \,^{\circ}C$ ergibt hellgelbe Kristalle, Schmp. 83 $^{\circ}C$.

7b: ¹H-NMR ([D₆]Aceton): $\delta = 7.56, 7.52 - 7.43, 7.32$ (2:6:2, je m, 2 C₆H₅); 4.41 und 4.29 (je 1 H, dq, ${}^{2}J = -10.9$ Hz, ${}^{3}J = 7.1$, OCH₂), 2.02 (1 H, m, CHEt), 1.76 [2 H, m, CHCH₂Me diastereotop], 1.39 (3H, t, ${}^{3}J = 7.1$ Hz, CH₃, OEt), 0.83 [3H, t, ${}^{3}J = 7.3$ Hz, CHCH₂CH₃, 0.62 (3H, d, ${}^{3}J = 6.6$ Hz, CHCH₃). $-{}^{13}$ C-NMR $(CDCl_3): \delta = 241.13 (Fe=C); 208.07, 201.38, 201.10 [Fe(CO)_3];$ 176.11 (CO₂Et), 162.96 [q, ${}^{2}J_{C,F} = 37$ Hz, $C = O(CF_{3})$], 142.49 (C-1, NC6H5), 138.44 (C-1, CC6H5); 131.05, 129.69, 129.34, 128.74, 127.50, 126.01 (1 : 1 : 2 : 2 : 2 : 2, C-2 bis C-6, NC_6H_5 und CC_6H_5); 115.83 $(q, {}^{1}J_{C,F} = 290 \text{ Hz}, \text{ CF}_{3}), 68.67 (C-4), 60.69 (OCH_{2}), 36.80 (CH, CH_{2}), 60.69 (OCH_{2}), 60.69 (CH_{2}), 60.69 (CH_{2$ CHEt), 28.52 (CHCH₂Me), 15.32 (CH₃, CH – CH₃), 14.32 (CH₃, OEt), 12.47 (CHCH₂CH₃). - IR (Hexan, Isomerengemisch **7b**: **7b'** = 4:1), cm⁻¹ (%): \tilde{v} = 2094.7 (100), 2050.3 (70), 2011.8 (70) $[v(C \equiv O)]$, 1699.3 (40) [v(C = O)]. – MS (70 eV, Isomerengemisch 7b:7b' = 4:1: m/z (%), 547 (10) [M⁺ - CO], 491 (20) [M -3 CO, 463 (20) [491 - C₂H₄], 462 (20) [M - Et], 294 (40), 180 (60) [PhCNPh], 105 (70), 77 (100), 69 (100) [CF₃], 56 (100) [Fe].

7b': ¹H-NMR [D₆]Aceton): δ = 7.56, 7.52-7.43, 7.36-7.27 (2 : 6 : 2, je m, 2 C₆H₅); 4.41 und 4.29 (je 1 H, dq, ²J = -10.9 Hz, ³J = 7.1, OCH₂), 2.02 (1 H, m, CHEt), 1.76 (2 H, m, CHCH₂Me diastereotop), 1.39 (3 H, t, ³J = 7.1 Hz, CH₃, OEt), 12.7 (3 H, d, ³J = 6.6 Hz, CH-CH₃), 0.45 (3 H, t, ³J = 7.3 Hz, CHCH₂CH₃). - ¹³C-NMR (CDCl₃): δ = 241.13 (Fe=C); 208.17, 201.38, 201.15 [Fe(CO)₃]; 176.11 (CO₂Et), 162.96 [q, ²J_{C,F} = 37 Hz, C=O(CF₃)], 142.36 (C-1, NC₆H₅), 138.35 (C-1, CC₆H₅); 131.05, 129.69, 129.24, 128.74, 127.41, 126.07 (1 : 1 : 2 : 2 : 2 : 2, C-2 bis C-6, NC₆H₅ und CC₆H₅); 115.83 (q, ¹J_{C,F} = 290 Hz, CF₃), 68.67 (C-4), 60.69 (OCH₂), 37.92 (CH, CHEt), 22.17 (CHCH₂Me), 17.91 (CH₃, CH-CH₃), 14.32 (CH₃, OEt), 12.40 (CHCH₂CH₃). - IR und MS wie bei 7b.

C₂₆H₂₄F₃FeNO₇ (575.3) Ber. C 54.28 H 4.20 N 2.43 Gef. C 54.23 H 3.96 N 2.42

CAS-Registry-Nummern

1: 35797-87-6 / 2a: 14016-34-3 / 2b: 76941-48-5 / 2c: 30364-19-3 / 3a: 133850-85-8 / (E)-3b: 133850-87-0 / (Z)-3b: 133907-15-0 / (E)-3c: 133850-89-2 / (Z)-3c: 133907-17-2 / 4a: 133850-86-9 / (E)-4b: 133850-88-1 / (Z)-4b: 133907-16-1 / (E)-4c: 133850-90-5 / (Z)-4c: 133907-18-3 / 6a: 133869-56-4 / 7a: 133850-91-6 / 7b: 133850-92-7

- ³⁾ ^{3a)} B. Dorer, E. O. Fischer, Chem. Ber. 107 (1974) 2683. ^{3b)} M. A. Sierra, L. Hegedus, J. Am. Chem. Soc. 111 (1989) 2335; L. S. Hegedus, G. de Weck, S. D' Andrea, *ibid.* 110 (1988) 2122. ^{3c)} W. D. Wulff, R. W. Kaesler, Organometallics, 4 (1985) 1461. ^{3d)} M. Brookhart, W. B. Studabaker, Chem. Rev. 87 (1987) 411. ^{3e)} A. Wienand, H.-U. Reißig, *Tetrahedron Lett.* 29 (1988) 2315; M. Buchert, H.-U. Reißig, *ibid.* 29 (1988) 2319.
- ^{3e)} A. Wienand, H.-U. Reißig, Tetrahedron Lett. 29 (1988) 2315; M. Buchert, H.-U. Reißig, *ibid.* 29 (1988) 2319.
 ⁴⁾ ^{4a)} McGuire, M. A. Hegedus, L. S. Hegedus, J. Am. Chem. Soc. 104 (1982) 5538; L. S. Hegedus, L. M. Schultze, J. Toro, C. Yijun, Tetrahedron 41 (1985) 5833; L. S. Hegedus, R. Imwinkelried, M. Alarid-Sargent, D. Dvorak, Y. Satoh, J. Am. Chem. Soc. 112 (1990) 1109, und dort angegebene Literatur. – ^{4b)} L. S. Hegedus, M. A. McGuire, L. M. Schultze, C. Yijun, O. P. Anderson, J. Am. Chem. Soc. 106 (1984) 2680. – ^{4c)} L. Knauss, E. O. Fischer, Chem. Ber. 103 (1970) 3744; J. Organomet. Chem. 31 (1971) C38. – ^{4d0} W. Weiss, J. Hoffmann in Advances in Metal Carbene Chemistry (U. Schubert, Ed.), S. 351–354, Kluwer Academic

¹⁾ 51. Mitteilung: R. Aumann, H. Heinen, P. Hinterding, N. Sträter, B. Krebs, *Chem. Ber.* **124** (1991) 1229.

 ²⁾ Ubersichtsartikel: ^{2a)} K.-H. Dötz, Angew. Chem. **96** (1984) 573; Angew. Chem. Int. Ed. Engl. **23** (1984) 587. – ^{2b)} W. D. Wulff, Adv. Met. Org. Chem. 1 (1989) 209.
 ³⁾ ^{3a)} B. Dorer, E. O. Fischer, Chem. Ber. **107** (1974) 2683. – ^{3b)} M.

Publishers, Dordrecht 1989. - 4e) K. Weiss, P. Kindl, Angew. Chem. 96 (1984) 616; Angew. Chem. Int. Ed. Engl. 23 (1984) 629. – ⁴⁰ H. Fischer, A. Schlageter, W. Bidell, A. Früh, Orga-

- nometallics 10 (1991) 389. ^{5) 5a)} R. Aumann, J. Uphoff, Angew. Chem. 99 (1987) 361; Angew. Chem. Int. Ed. Engl. 26 (1987) 357. ^{5b)} R. Aumann, H.-D. Melchers, J. Organomet. Chem. 355 (1988) 351, und dort angegebene Literatur. – (1989) 1977. ^{5c)} R. Aumann, B. Trentmann, Chem. Ber. 122
- ⁶ H. Fischer, persönliche Mitteilung. ⁷⁾ M. Frey, T. A. Jenny, H. Stoeckli-Evans, Organometallics 9 (1990) 1806, und dort angegebene Literatur.
- ⁸⁾ M. L. H. Green, C. R. Hurley, J. Organomet. Chem. 10 (1967) 188; M. L. H. Green, L. C. Mitchard, M. G. Swanwick, J. Chem. Soc. A 1971, 794.
- ⁹⁾ Vgl. J. Klimes, E. Weiss, Angew. Chem. 94 (1982) 207; Angew. Chem. Int. Ed. Engl. 21 (1982) 205, und dort angegebene Literatur.

- ¹⁰⁾ C. P. Casey, A. J. Shusterman, N. W. Vollendorf, K. J. Haller, J. Am. Chem. Soc. 104 (1982) 2417; C. P. Casey, N. W. Vollendorf, K. J. Haller, ibid. 106 (1984) 3757.
- K. J. Hallel, 10th, 100 (1964) 5157.
 ¹¹⁾ Vgl. C. Alvarez-Toledano, H. Rudler, J. C. Daran, Y. Jeannin, J. Chem. Soc., Chem. Commun. 1984, 574.
 ¹²⁾ A. J. Schultz, R. K. Brown, J. M. Williams, R. R. Schrock, J. Am. Chem. Soc. 103 (1981) 169.
 ¹³⁾ D. Adama, D. F. Cladach, N. M. Colembeski, F. C. Weissman.
- ¹³⁾ R. D. Adams, D. F. Clodosh, N. M. Golembeski, E. C. Weissman, J. Organomet. Chem. 172 (1979) 251; K. Aoki, Y. Yamamoto, Inorg. Chem. 15 (1976) 48.
- ¹⁴⁾ T. N. Sal'nikova, V. G. Andrianov, Koord. Khim. 3 (1977) 1607.
- ¹⁵⁾ K. Nakatsu, T. Mitsudo, H. Nakanishi, Y. Watanabe, Y. Ta-kegami, *Chem. Lett.* 1977, 1447.
 ¹⁶⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können
- beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55140, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[61/91]